This utility lets you draw colorful and stylish Heighway twin fractals. The options below will help you customize your fractal – you can set fractal's iteration stage, dimensions, orientation, and colors for each twin dragon individually. Make sure to select opposite colors for the twins to get a fabulous looking fractal. Fun fact – you can join infinitely many Heighway dragons together back-to-back, back-to-belly, or belly-to-belly and tile the entire space. Created by fractal fans from team Browserling. Fractabulous!
This utility lets you draw colorful and stylish Heighway twin fractals. The options below will help you customize your fractal – you can set fractal's iteration stage, dimensions, orientation, and colors for each twin dragon individually. Make sure to select opposite colors for the twins to get a fabulous looking fractal. Fun fact – you can join infinitely many Heighway dragons together back-to-back, back-to-belly, or belly-to-belly and tile the entire space. Created by fractal fans from team Browserling. Fractabulous!
This online browser-based tool allows you to draw your own unique twin dragon fractal. The twin dragon fractal is often casually called the Heighway twins. The scientists, Chandler Davis and Donald Knuth, who discovered this fractal attributed it to Heighway because of its resemblance and connection to the regular Heighway fractal. As it turns out, the Heighway twins are Siamese dragons conjoined belly to belly. When iterated for many stages, the dragon heads start from a single one point, diverge into bodies and converge again, ending with both tails touching at another point. The larger the iteration depth, the tighter together the dragon lines are drawn until finally lines are so close together that they fill the twins' bodies completely. Heighway twins is one of many fractals that can be tiled – if you take a copy of this fractal, you can conjoin it with the previous copy. You can repeat this process multiple times until the whole area is filled with dragons. Mind boggling and awesome at the same time, or as we love to say – fractabulous!
This online browser-based tool allows you to draw your own unique twin dragon fractal. The twin dragon fractal is often casually called the Heighway twins. The scientists, Chandler Davis and Donald Knuth, who discovered this fractal attributed it to Heighway because of its resemblance and connection to the regular Heighway fractal. As it turns out, the Heighway twins are Siamese dragons conjoined belly to belly. When iterated for many stages, the dragon heads start from a single one point, diverge into bodies and converge again, ending with both tails touching at another point. The larger the iteration depth, the tighter together the dragon lines are drawn until finally lines are so close together that they fill the twins' bodies completely. Heighway twins is one of many fractals that can be tiled – if you take a copy of this fractal, you can conjoin it with the previous copy. You can repeat this process multiple times until the whole area is filled with dragons. Mind boggling and awesome at the same time, or as we love to say – fractabulous!
In this example, we increase the iteration stage to 16 and set the curve drawing width to 2 pixels. These conditions are sufficient for the curves to be drawn so close together that they completely fill the bounds of both Siamese dragons. As a result, we get two filled Heighway twin dragons, one filled with cyan color and the other filled with lime color.
This example gives a detailed view of twin Heighway fractal. By setting the recursion level to 11 iterations, we can see how this fractal is made of individual line segments that form a mesh of interconnected rectangles. We've chosen complementary colors for the drawing to make it maximally attractive. It uses a governor-bay color for the first dragon, thunderbird color for the second dragon, and anakiwa color for the background. It sets the line segment width to 7 pixels and canvas space to 800x1000 pixels.
In this example, we create a twin dragon island fractal. This fractal is constructed by using just one color (cloud-burst blue) to fill the contours of the twins and a high iteration count (18 iterations). The dragon curve is just one pixel thick but by the time it's iterated 18 times, it's twisted and looped so many times that this tiny line completely fills the dragon bounds. This fractal island is also often called the Heighway island fractal.
You can pass options to this tool using their codes as query arguments and it will automatically compute output. To get the code of an option, just hover over its icon. Here's how to type it in your browser's address bar. Click to try!
Walk the Hilbert fractal and enumerate its coordinates.
Walk the Peano fractal and enumerate its coordinates.
Walk the Moore fractal and enumerate its coordinates.
Encode the Hilbert fractal as a string.
Encode the Peano fractal as a string.
Encode the Moore fractal as a string.
Encode the Cantor set as a string.
Encode the Heighway Dragon as a string.
Encode the Sierpinski fractal as a string.
Generate a Sierpinski tetrahedron (tetrix) fractal.
Generate a Cantor's cube fractal.
Generate a Sierpinski-Menger fractal.
Generate a Jerusalem cube fractal.
Generate a Jeaninne Mosely fractal.
Generate a Mandelbrot tree fractal.
Generate a Barnsley's tree fractal.
Generate a Barnsley's fern fractal.
Generate a binary tree fractal.
Generate a ternary tree fractal.
Generate a dragon tree fractal.
Generate a de Rham curve.
Generate a Takagi-Landsberg fractal curve.
Generate a Peano pentagon fractal curve.
Generate a tridendrite fractal curve.
Generate a Pentigree fractal curve.
Generate a lucky seven fractal curve.
Generate an Eisenstein fractions fractal curve.
Generate a Bagula double five fractal curve.
Generate a Julia fractal set.
Generate a Mandelbrot fractal set.
Generate a Mandelbulb fractal.
Generate a Mandelbox fractal.
Generate a Buddhabrot fractal.
Generate a Burning Ship fractal.
Generate a toothpick sequence fractal.
Generate an Ulam-Warburton fractal curve.
Generate an ASCII fractal.
Generate an ANSI fractal.
Generate a Unicode fractal.
Generate an emoji fractal.
Generate a braille code fractal.
Generate a fractal in audio form.
Create a fractal that looks like one but isn't a fractal.
Generate a fractal from any text.
Generate a fractal from a string.
Generate a fractal from a number.
Join any two fractals together.
Create a completely random fractal.
Set up an arbitrary IFS system and iterate it.
Recursively transform an image using IFS rules.
Run infinite compositions of analytic functions.
Create a surface that mimics a natural terrain.
Create a fractal surface via Brownian motion.
Apply fractal algorithms on your image and make it self-similar.
Find fractal patterns in any given image.
Find fractal patterns in any given text.
Find fractal patterns in any given number.
Tessellate a plane with fractals.
Run a cellular automaton with custom rules.
Play Conway's Game of Life on an infinite grid.
Subscribe to our updates. We'll let you know when we release new tools, features, and organize online workshops.
Enter your email here
We're Browserling — a friendly and fun cross-browser testing company powered by alien technology. At Browserling our mission is to make people's lives easier, so we created this collection of fractal tools. Our tools have the simplest user interface that doesn't require advanced computer skills and they are used by millions of people every month. Our fractal tools are actually powered by our web developer tools that we created over the last couple of years. Check them out!