Our Network


Coming Soon


Coming Later

McWorter Dendrite Fractal Generator

World's Simplest Fractal Tool

This utility lets you draw your own original McWorter dendrite fractals. You can choose between four dendrite types – pentadendrite, hexadendrite, octadendrite and a single dendrite branch. There are also two extra drawing modes available – the starfish fractal mode and open fractal mode that create even more possibilities (see description below for more details). You can adjust the size and color of the drawing canvas and set its padding. You can also adjust the number of iterations, choose the rotation of the fractal (clockwise or counterclockwise), and its direction (right, left, up or down). Finally, you can choose the thickness of the fractal curve, adjust its color, and fill the inside of the fractal with any color. Fun fact – the McWorter fractal consists of a set of six-fold zigzags that don't overlap and have a 5-fold symmetry. Created by fractal fans from team Browserling. Fractabulous!

᠎᠎᠎          Tool Options

Dendrite Fractal Types

Draw the fractal from
five dendrites.
Draw the fractal from
six dendrites.
Draw the fractal from
eight dendrites.
Draw the fractal from
a single dendrite.

Iterations, Size and Modes

Dendrite's iterative depth.
Width.
Height.
Draw dendrites pointing
inside the polygon.
(Create an anti-dendrite.)
Make a gap between
the dendrites.
The angle of fractal's gap.

Colors, Line and Frame

Canvas fill color.
Dendrite curve color.
Dendrite fill color.
Curve width.
Padding.
Dendrite fractal's rotation.
Dendrite fractal's direction.

What Is a McWorter Dendrite Fractal Generator?

This online browser-based tool creates unique and colorful McWorter dendrite fractals. The McWorter dendrite fractals are a family of symmetric and self-similar fractals that consists of dendrite subfractals. The dendrite curve is a variation of McWorter's pentigree (short for pentagon filigree). It's constructed from a zig-zag of six segments, which are bent at angles of 72, 72, 144 (2x72), 72, and 72 degrees. The fractal starts with a unit segment and with each step, each segment is replaced with this zigzag. If this process is repeatedly iterated, then a dendrite fractal is formed. McWorter's pentadendrite is formed by sequentially connecting five copies of the dendrite curve that are pointing outside the pentagon. Similarly, the hexadendrite and octadendrite are a connection of six and eight dendrites. Dendrites can also be connected in such a way that they point inside the polygon. This case is illustrated if the "Starfish Mode" option is enabled. This mode reverses the direction of dendrite fibers and creates a starfish fractal. The "Open Mode" cuts the fractal open and creates a gap between the dendrites. This fractal (just like many others) was discovered by accident by William A. McWorter as he was experimenting with a BASIC program that generates dragon curves. Mind blowing and ingenious at the same time, or as we love to say – fractabulous!


McWorter Dendrite Fractal Generator Examples

Click to try!

Pentadendrite Fractal

In this example, we generate the McWorter's pentadentrite fractal, which is created from five touching dendrites pointing outside the pentagon. We set the rotation of the fractal to counterclockwise and generate the fifth iteration step on a Koamaru deep blue color canvas of 600 by 600 pixels.

Required options
These options will be used automatically if you select this example.
Draw the fractal from
five dendrites.
Dendrite's iterative depth.
Width.
Height.
Draw dendrites pointing
inside the polygon.
(Create an anti-dendrite.)
Make a gap between
the dendrites.
Canvas fill color.
Dendrite curve color.
Dendrite fill color.
Curve width.
Padding.
Dendrite fractal's rotation.
Dendrite fractal's direction.

Starfish Pentadendrite

This example applies the "Starfish Mode" to the pentadentrite fractal. In this case, all five dendrites point inside the pentagon and as a result, we get a fractal that is very similar to a starfish! We draw a 4th order curve on a Malibu color canvas, using a black line and golden-fizz color fill.

Required options
These options will be used automatically if you select this example.
Draw the fractal from
five dendrites.
Dendrite's iterative depth.
Width.
Height.
Draw dendrites pointing
inside the polygon.
(Create an anti-dendrite.)
Make a gap between
the dendrites.
Canvas fill color.
Dendrite curve color.
Dendrite fill color.
Curve width.
Padding.
Dendrite fractal's rotation.
Dendrite fractal's direction.

Hexadendrite Fractal

In this example, we generate a hexadendrite fractal and make the dendrites grow outside the hexagon. As there the hexagon has six sides, the dendrites are much more spread apart and the space that is formed inside the fractal is shaped like gecko lizard's fingers. We draw 5 iterations on a Klein-blue color background and fill gecko's paws with a Harlequin-green color.

Required options
These options will be used automatically if you select this example.
Draw the fractal from
six dendrites.
Dendrite's iterative depth.
Width.
Height.
Draw dendrites pointing
inside the polygon.
(Create an anti-dendrite.)
Make a gap between
the dendrites.
Canvas fill color.
Dendrite curve color.
Dendrite fill color.
Curve width.
Padding.
Dendrite fractal's rotation.
Dendrite fractal's direction.

Octadendrite Fractal

It this example, we draw three clockwise recursions of an octadendrite fractal on a 600x600px canvas with 10px padding. This fractal consists of eight dendrite fibers that connect at an angle of 45 degrees. This construction makes it look a bit similar to the Koch snowflake fractal.

Required options
These options will be used automatically if you select this example.
Draw the fractal from
eight dendrites.
Dendrite's iterative depth.
Width.
Height.
Draw dendrites pointing
inside the polygon.
(Create an anti-dendrite.)
Make a gap between
the dendrites.
Canvas fill color.
Dendrite curve color.
Dendrite fill color.
Curve width.
Padding.
Dendrite fractal's rotation.
Dendrite fractal's direction.

Open Pentadendrite

In this example, we apply the "Open Mode" to the pentadendrite fractal. As a result, we get a 15-degree opening between the first and last dendrites. In this drawing mode, the fractal can't be filled as it's not connected.

Required options
These options will be used automatically if you select this example.
Draw the fractal from
five dendrites.
Dendrite's iterative depth.
Width.
Height.
Draw dendrites pointing
inside the polygon.
(Create an anti-dendrite.)
Make a gap between
the dendrites.
The angle of fractal's gap.
Canvas fill color.
Dendrite curve color.
Dendrite fill color.
Curve width.
Padding.
Dendrite fractal's rotation.
Dendrite fractal's direction.

A Dendrite Fiber

This example shows an individual dendrite subfractal fiber at its 5th iteration that all other fractals are made out of. At 72 degrees it has 5-fold symmetry creates a pentadentrite, at 60 degrees it has 6-fold symmetry and creates a hexadentrite and at 45 degrees it has 8-fold symmetry and creates an octadentrite. It also has several other symmetries that are less interesting.

Required options
These options will be used automatically if you select this example.
Draw the fractal from
a single dendrite.
Dendrite's iterative depth.
Width.
Height.
Draw dendrites pointing
inside the polygon.
(Create an anti-dendrite.)
Make a gap between
the dendrites.
The angle of fractal's gap.
Canvas fill color.
Dendrite curve color.
Dendrite fill color.
Curve width.
Padding.
Dendrite fractal's rotation.
Dendrite fractal's direction.

Pro tips Master online fractal tools

You can pass options to this tool using their codes as query arguments and it will automatically compute output. To get the code of an option, just hover over its icon. Here's how to type it in your browser's address bar. Click to try!

https://onlinetools.com/fractal/draw-mcworter-dendrite-fractal?width=600&height=600&iterations=5&background-color=%2523171594&line-segment-color=white&fill-color=%2523336699&line-width=3&padding=10&pentadendrite=true&starfish-mode=false&open-mode=false&rotation=counterclockwise&direction=up

All Fractal Tools

Didn't find the tool you were looking for? Let us know what tool we are missing and we'll build it!
Quickly draw a custom McWorter dendrite fractal.
Quickly draw a custom canopy tree fractal.
Quickly draw a custom Gosper fractal.
Quickly draw a custom Z-order fractal.
Quickly draw a custom Hilbert fractal.
Quickly draw a custom binary v-fractal.
Quickly draw a custom Peano fractal.
Quickly draw a custom Heighway dragon fractal.
Quickly draw a custom twin dragon Heighway fractal.
Quickly draw a custom Heighway nonadragon fractal.
Quickly draw a custom Koch fractal.
Quickly draw a custom triflake fractal.
Quickly draw a custom Sierpinski triangle fractal.
Quickly draw a custom Sierpinski pentagon fractal.
Quickly draw a custom Sierpinski hexagon fractal.
Quickly draw a custom Sierpinski polygon fractal.
Quickly draw a custom Moore fractal.
Quickly draw a custom Cantor comb fractal.
Quickly draw a custom Cantor dust fractal.
Quickly draw a custom Levy fractal curve.
Quickly draw a custom ice fractal.
Quickly draw a custom Pythagoras tree fractal.
Quickly draw a custom t-square fractal.
Quickly draw a custom Hausdorff tree fractal.

Coming Soon

These fractal tools are on the way!
Generate a Hilbert Sequence

Walk the Hilbert fractal and enumerate its coordinates.

Generate a Peano Sequence

Walk the Peano fractal and enumerate its coordinates.

Generate a Moore Sequence

Walk the Moore fractal and enumerate its coordinates.

Generate a Hilbert String

Encode the Hilbert fractal as a string.

Generate a Peano String

Encode the Peano fractal as a string.

Generate a Moore String

Encode the Moore fractal as a string.

Generate a Cantor String

Encode the Cantor set as a string.

Generate a Dragon String

Encode the Heighway Dragon as a string.

Generate a Sierpinski String

Encode the Sierpinski fractal as a string.

Sierpinski Pyramid

Generate a Sierpinski tetrahedron (tetrix) fractal.

Cantor's Cube

Generate a Cantor's cube fractal.

Menger Sponge

Generate a Sierpinski-Menger fractal.

Jerusalem Cube

Generate a Jerusalem cube fractal.

Mosely Snowflake

Generate a Jeaninne Mosely fractal.

Mandelbrot Tree

Generate a Mandelbrot tree fractal.

Barnsey's Tree

Generate a Barnsley's tree fractal.

Barnsey's Fern

Generate a Barnsley's fern fractal.

Binary Fractal Tree

Generate a binary tree fractal.

Ternary Fractal Tree

Generate a ternary tree fractal.

Dragon Fractal Tree

Generate a dragon tree fractal.

De Rham Fractal

Generate a de Rham curve.

Takagi Fractal

Generate a Takagi-Landsberg fractal curve.

Peano Pentagon

Generate a Peano pentagon fractal curve.

Tridendrite Fractal

Generate a tridendrite fractal curve.

McWorter's Pentigree

Generate a Pentigree fractal curve.

McWorter's Lucky Seven

Generate a lucky seven fractal curve.

Eisenstein Fractions

Generate an Eisenstein fractions fractal curve.

Bagula Double V

Generate a Bagula double five fractal curve.

Julia Set

Generate a Julia fractal set.

Mandelbrot Set

Generate a Mandelbrot fractal set.

Mandelbulb Fractal

Generate a Mandelbulb fractal.

Mandelbox Fractal

Generate a Mandelbox fractal.

Buddhabrot Fractal

Generate a Buddhabrot fractal.

Burning Ship Fractal

Generate a Burning Ship fractal.

Toothpick Fractal

Generate a toothpick sequence fractal.

Ulam-Warburton Fractal

Generate an Ulam-Warburton fractal curve.

ASCII Fractal

Generate an ASCII fractal.

ANSI Fractal

Generate an ANSI fractal.

Unicode Fractal

Generate a Unicode fractal.

Emoji Fractal

Generate an emoji fractal.

Braille Fractal

Generate a braille code fractal.

Audio Fractal

Generate a fractal in audio form.

Draw a Pseudofractal

Create a fractal that looks like one but isn't a fractal.

Convert Text to a Fractal

Generate a fractal from any text.

Convert a String to a Fractal

Generate a fractal from a string.

Convert a Number to a Fractal

Generate a fractal from a number.

Merge Two Fractals

Join any two fractals together.

Draw a Random Fractal

Create a completely random fractal.

Iterate an IFS

Set up an arbitrary IFS system and iterate it.

Run IFS on an Image

Recursively transform an image using IFS rules.

Iterate an ICAF

Run infinite compositions of analytic functions.

Generate a Fractal Landscape

Create a surface that mimics a natural terrain.

Generate a Brownian Surface

Create a fractal surface via Brownian motion.

Generate a Self-similar Image

Apply fractal algorithms on your image and make it self-similar.

Find Fractal Patterns in Images

Find fractal patterns in any given image.

Find Fractal Patterns in Text

Find fractal patterns in any given text.

Find Fractal Patterns in Numbers

Find fractal patterns in any given number.

Fill a Plane with Fractals

Tessellate a plane with fractals.

Run a Cellular Automaton

Run a cellular automaton with custom rules.

Play Game of Life

Play Conway's Game of Life on an infinite grid.


Subscribe!

Subscribe to our updates. We'll let you know when we release new tools, features, and organize online workshops.

Enter your email here


Feedback. We'd love to hear from you! 👋



Didn't find the tool you were looking for? Let us know what tool we are missing and we'll build it!