This utility lets you draw colorful and custom pentaflake fractals. You can choose between three different forms of this fractal – regular pentaflake, partial pentaflake, and full pantaflake. You can also set the fractal's recursive order, its size (width and height) in pixels, curve width and padding. To create the most beautiful fractal, you can customize colors for the background, curve, and inner fill. Fun fact – the boundary of a pentaflake is the Koch curve of 72 degrees. Created by fractal fans from team Browserling. Fractabulous!
This utility lets you draw colorful and custom pentaflake fractals. You can choose between three different forms of this fractal – regular pentaflake, partial pentaflake, and full pantaflake. You can also set the fractal's recursive order, its size (width and height) in pixels, curve width and padding. To create the most beautiful fractal, you can customize colors for the background, curve, and inner fill. Fun fact – the boundary of a pentaflake is the Koch curve of 72 degrees. Created by fractal fans from team Browserling. Fractabulous!
This online browser-based tool allows you to illustrate three primary types of Sierpinski pentaflake fractal. The pentaflake is a fractal with 5-fold symmetry and just like other flake fractals, it's self-similar. This fractal was first mentioned by Albrecht Durer but it was extensively studied by a Polish scientist Waclaw Sierpinski. To make a pentaflake, you first start with a pentagon and in every next recursive step, you place five identical (but smaller by a factor of 1/(1+φ), where φ is the golden ratio) pentagons at all vertices of the original pentagon. All further iteration steps are drawn in the same way. Self-similarity of this construction is instantly obvious as the pentagons in the next iteration have a smaller scale but have the same pattern and form as the whole fractal. The perimeter of a pentaflake can be approximated with multiple Koch curves that are bent and joined together. As the length of a Koch curve is infinite, so is the length of the perimeter of a pentаflake. Mind blowing and ingenious at the same time, or as we love to say – fractabulous!
This online browser-based tool allows you to illustrate three primary types of Sierpinski pentaflake fractal. The pentaflake is a fractal with 5-fold symmetry and just like other flake fractals, it's self-similar. This fractal was first mentioned by Albrecht Durer but it was extensively studied by a Polish scientist Waclaw Sierpinski. To make a pentaflake, you first start with a pentagon and in every next recursive step, you place five identical (but smaller by a factor of 1/(1+φ), where φ is the golden ratio) pentagons at all vertices of the original pentagon. All further iteration steps are drawn in the same way. Self-similarity of this construction is instantly obvious as the pentagons in the next iteration have a smaller scale but have the same pattern and form as the whole fractal. The perimeter of a pentaflake can be approximated with multiple Koch curves that are bent and joined together. As the length of a Koch curve is infinite, so is the length of the perimeter of a pentаflake. Mind blowing and ingenious at the same time, or as we love to say – fractabulous!
In this example, we select five pentagons as the base figure for the Sierpinski pentaflake. This fractal type starts with 1 pentagon at the 1st iteration step, at the second iteration step there are 5 pentagons, at the third – 25 (5×5), at the fourth – 125 (5×5×5). At the n-th step, there are 5^(n-1) pentagons. We display the third iteration step, which has 25 pentagons all connected vertex-to-vertex. We paint them in harlequin-green color, add a black 4px border around them, and fill the background with klein-blue color.
In this example, we generate a partial Sierpinski pentaflake. The word partial here means it's not fully filled but just partially with an extra pentagon recursively placed in the middle of the original five pentagons. In this type of fractal, the number of pentagons increases as follows: 1 → 6 → 6×5 → 6×5×5 → … → 6×5^(n-2). We draw the fractal at a recursive depth of 4, so there are 150 pentagons in this drawing. We've also turned the pentaflake upside down. The canvas is set to a square of 700×700 pixels in size, the line is 5 pixels and padding is 20 pixels.
In this example, we generate a Durer fractal. The Durer fractal is the third type of the pentaflake fractal, which completely fills all centers with extra pentagons. Here, with each iteration, the number of pentagons increases sixfold – there are five pentagons at the edges and one in the center. Thus, the number of pentagons at the nth iteration is equal to 6^(n-1). We illustrate the 5th iteration of the fractal and use only two colors, filling the pentagons with daisy color and background with comet color.
You can pass options to this tool using their codes as query arguments and it will automatically compute output. To get the code of an option, just hover over its icon. Here's how to type it in your browser's address bar. Click to try!
Walk the Hilbert fractal and enumerate its coordinates.
Walk the Peano fractal and enumerate its coordinates.
Walk the Moore fractal and enumerate its coordinates.
Encode the Hilbert fractal as a string.
Encode the Peano fractal as a string.
Encode the Moore fractal as a string.
Encode the Cantor set as a string.
Encode the Heighway Dragon as a string.
Encode the Sierpinski fractal as a string.
Generate a Sierpinski tetrahedron (tetrix) fractal.
Generate a Cantor's cube fractal.
Generate a Sierpinski-Menger fractal.
Generate a Jerusalem cube fractal.
Generate a Jeaninne Mosely fractal.
Generate a Mandelbrot tree fractal.
Generate a Barnsley's tree fractal.
Generate a Barnsley's fern fractal.
Generate a binary tree fractal.
Generate a ternary tree fractal.
Generate a dragon tree fractal.
Generate a de Rham curve.
Generate a Takagi-Landsberg fractal curve.
Generate a Peano pentagon fractal curve.
Generate a tridendrite fractal curve.
Generate a Pentigree fractal curve.
Generate a lucky seven fractal curve.
Generate an Eisenstein fractions fractal curve.
Generate a Bagula double five fractal curve.
Generate a Julia fractal set.
Generate a Mandelbrot fractal set.
Generate a Mandelbulb fractal.
Generate a Mandelbox fractal.
Generate a Buddhabrot fractal.
Generate a Burning Ship fractal.
Generate a toothpick sequence fractal.
Generate an Ulam-Warburton fractal curve.
Generate an ASCII fractal.
Generate an ANSI fractal.
Generate a Unicode fractal.
Generate an emoji fractal.
Generate a braille code fractal.
Generate a fractal in audio form.
Create a fractal that looks like one but isn't a fractal.
Generate a fractal from any text.
Generate a fractal from a string.
Generate a fractal from a number.
Join any two fractals together.
Create a completely random fractal.
Set up an arbitrary IFS system and iterate it.
Recursively transform an image using IFS rules.
Run infinite compositions of analytic functions.
Create a surface that mimics a natural terrain.
Create a fractal surface via Brownian motion.
Apply fractal algorithms on your image and make it self-similar.
Find fractal patterns in any given image.
Find fractal patterns in any given text.
Find fractal patterns in any given number.
Tessellate a plane with fractals.
Run a cellular automaton with custom rules.
Play Conway's Game of Life on an infinite grid.
Subscribe to our updates. We'll let you know when we release new tools, features, and organize online workshops.
Enter your email here
We're Browserling — a friendly and fun cross-browser testing company powered by alien technology. At Browserling our mission is to make people's lives easier, so we created this collection of fractal tools. Our tools have the simplest user interface that doesn't require advanced computer skills and they are used by millions of people every month. Our fractal tools are actually powered by our web developer tools that we created over the last couple of years. Check them out!